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SUMMARY

A vortex method has been developed where spatial adaption of the Lagrangian vortex particles is
provided by the technique of radial basis function interpolation. In this way, the meshless formulation
of the vortex method is preserved throughout. Viscous e�ects are provided by the core spreading
method, where core size control is accomplished in the spatial adaption, thus ensuring convergence.
Numerical experiments demonstrate considerable increase in accuracy, in comparison with standard
remeshing schemes used with vortex methods. Proof-of-concept is achieved successfully on a problem
of quasi-steady tripole vortex �ow, and parallel implementation of the method has permitted high-
accuracy computations of vortex interactions at high Reynolds number. Copyright ? 2005 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

In vortex methods, the Navier–Stokes equations are expressed in vorticity formulation and the
vorticity �eld becomes the principal variable for computations. The �uid velocity is obtained
from an integral on the vorticity, and the pressure is absent from the formulation. In addi-
tion, vortex methods are characterized by using a Lagrangian approach, where vortex particles
convect with the local �uid velocity. Thus, they are not formulated to depend on a compu-
tational grid, and here lies one of their potential advantages, since grid-generation can be a
very expensive process of CFD (this is the case for realistic con�gurations and, in particular,
for viscous dominated �ows; see, for example Reference [1]). In addition, the Lagrangian
formulation is devoid of numerically di�usive truncation errors, as shown in Reference [2],
and of CFL-type stability constraints (see, for example Reference [3]). Signi�cant reviews
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on vortex methods have been published over the years, for example References [2, 4, 5], and
recently also a book [6].

1.1. Need for spatial adaption

The calculation of unsteady �ows using vortex blob methods su�ers from loss of accuracy due
to the Lagrangian deformation of the particle �eld; this was shown by extensive numerical
experiments in Reference [7]. As vortex particles are allowed to freely convect, ‘gaps’ appear
in areas where the �ow strain is large and thus the particle set loses the ability to reconstruct
accurately the smooth vorticity �eld. The widespread solution to this issue is the applica-
tion of a ‘remeshing’ or ‘redistribution’ scheme, whereby particles are periodically re-located
onto a regular lattice, and their circulation weights are interpolated to the new locations. The
addition of remeshing to Lagrangian vortex methods made long-time, unsteady calculations
possible [8], and has been embraced by various workers who have produced remarkable re-
sults [9–13]. On the other hand, some authors have been concerned that the grid-free nature
of vortex methods is undermined by the requirements of remeshing. More importantly, the
simulation of high-Reynolds number �ows to high accuracy may be limited by the errors of
interpolation in the remeshing schemes. An extensive program of numerical experiments has
demonstrated that remeshing does introduce noticeable errors; see Reference [14].

1.2. Meshless alternative to standard remeshing

The remeshing processes in widespread use obtain values of circulation on the nodes of a
regular stencil by interpolation of the circulation strength of each scattered particle, using
tensor product formulations. Thus, they apply interpolation from a scattered set of nodes onto
a regular one, with a moderate stencil width. It has been shown, however, that the most
accurate techniques for the interpolation of scattered data are those with global in�uence. In a
renowned review paper [15] studying almost 30 algorithms, the methods of interpolation using
multi-quadrics and thin-plate splines were declared superior in accuracy; these are examples
of (global) radial basis function (RBF) interpolation.
The techniques of RBF interpolation were recently applied by the authors to the spatial

adaption of Lagrangian vortex particles in a time-marching algorithm, and the method was
tested and compared to the standard remeshing schemes, using classic test problems; see
Reference [14]. The potential of considerable increase in accuracy, with a fully meshless
method, was demonstrated in said tests. In one of the reported experiments, RBF interpolation
resulted in a four-order-of-magnitude improvement over remeshing using a standard third-
order kernel. In addition to this, the use of RBF interpolation for spatial adaption provided an
opportunity to use the core spreading viscous scheme [2, 16], with core size control enforced
during the adaption process. In this way, the convergence issues of core spreading pointed
out in Reference [17] are successfully addressed. Until now, the only available solution to
said convergence issue was vortex particle splitting [18]; see below.

1.3. Viscous schemes in vortex methods

Historically, the �rst vortex method to include viscous e�ects was the random vortex method
(RVM) [19], where in a fractional step formulation, the viscous sub-step consists of a
Brownian-like motion of the particles. The slow rate of convergence of this stochastic method
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motivated the development of various alternatives. Possibly the prevailing ‘deterministic’ vis-
cosity scheme is the particle strength exchange method (PSE), where, as in general particle
methods [20], the Laplacian at a particle’s location is approximated by an integral operator
which is discretized by quadrature, using as quadrature points the locations of the particles. In
principle, the formulation of PSE is grid-free, but the fact that the accuracy relies strongly on
the quadrature rules used for the discretized integral means that in practice the method hinges
on having nearly uniformly spaced particle locations. For this reason, the extensive implemen-
tation of the PSE method has promoted the development and widespread use of remeshing
schemes, as discussed above. This has caused a bit of debate, as some workers maintain that
the grid-free nature of the vortex method is undermined when remeshing schemes relying on
regular particle grids are applied, sometimes as often as every time step.
Contemporary to the introduction of the RVM, it was recognized that vortex blobs could

be allowed to grow in time to simulate viscosity [2, 16], which came to be known as the
core spreading method. In this method, one can view the discretized vorticity �eld as a
superposition of ‘spreading line vortices’ of di�erent circulation strengths. Hence, to satisfy
identically the viscous part of the vorticity equation one lets the blob cores grow in time.
This method is utterly simple to implement, it is fully localized and grid-free, and easily
parallelizable—as is the RVM, but core spreading is deterministic so in principle allows for
better error control and faster convergence than the RVM. However, research and use of the
core spreading method stalled when the method was declared inconsistent in Reference [17].
The consistency error of core spreading is caused by the advection without deformation of
larger and larger vortex blobs as they spread. A particle splitting scheme was �nally proposed
to alleviate this problem in Reference [18], and proved to be convergent. Research on the
core spreading vortex method was e�ectively ‘resurrected’, but the splitting does introduce
numerical di�usion and its errors are in fact comparable to the RVM.
In this paper, proof-of-concept calculations of the evolution of a perturbed Gaussian mono-

pole, possessing a quasi-steady tripole attractor, are presented. This problem has been studied
before using vortex methods with core spreading and splitting [21], and our results agree
with these studies in general but demonstrate considerably improved quality. By means of a
parallel implementation of the method, a highly accurate calculation of vortex interaction at
high Reynolds number was also performed, with results that compare very well with published
spectral methods calculations [22].

2. FORMULATION OF THE METHOD

For incompressible �ow, ∇ · u(x; t)=0, and the two-dimensional vorticity transport equation
is

@!
@t
+ u · ∇!= ��! (1)

The vortex blob method proceeds by spatially discretizing the vorticity �eld onto particles
which have a radially symmetric distribution of vorticity, thus

!(x; t)≈!h(x; t)=
N∑
i=1
�i(t)��i(x − xi(t)) (2)
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where xi is the particle position, �i is its circulation strength, and the core size is �i. The core
sizes are usually uniform (�i=�), and the characteristic distribution of vorticity ��i commonly
called the cut-o� function, is frequently a Gaussian distribution, such as

��(x)=
1

2��2
exp

(−|x|2
2�2

)
(3)

The velocity �eld is obtained from the vorticity by means of the Biot–Savart law

u(x; t)=
∫
(∇ ×G)(x − x′)!(x′; t) dx′=

∫
K(x − x′)!(x′; t) dx′=(K ∗!)(x; t)

where K=∇ ×G is the Biot–Savart kernel, with G the Green’s function for the Poisson
equation, and ∗ representing convolution.
The vorticity transport is solved in this discretized form by convecting the particles with

the local �uid velocity, and accounting for viscous e�ects by changing the particle vorticity.
Hence, the unbounded vortex method is expressed by the following system of equations:

dxi
dt
= u(xi ; t)= (K ∗!)(xi ; t); d!

dt
= �∇2! (4)

To provide viscous e�ects via the core spreading method, the discretized vorticity �eld is
viewed as a superposition of spreading line vortices (see Reference [23, p. 204])

!i(xi ; t)=
�i
4��t

exp
(−|xi|2
4�t

)
(5)

Comparing (5) with (3) it is seen that the linear di�usion equation can be satis�ed exactly
by spreading �2 according to

d�2

dt
=2� (6)

which means that each vortex blob must spread out at a rate proportional to
√
�t, or

√
��t at

each time step. Note that this method does not apply viscous splitting of the Navier–Stokes
equation.

3. MESHLESS SPATIAL ADAPTION

A spatial adaption algorithm for the vortex method has been developed, based on radial
basis function (RBF) interpolation [24]. This is a technique for scattered data interpolation
that has received abundant interest in the function approximation community in the past
years. The scheme is formulated wholly grid-free, and numerical experiments demonstrate
that it provides opportunities for increased accuracy in vortex methods, compared to standard
remeshing schemes. In Reference [14], it was shown how with a very accurate discretization of
a radially symmetric vorticity distribution consisting of a Lamb–Oseen vortex, it can be seen
clearly that the �rst processing with remeshing causes a jump in the errors. These tests were
performed using the so-called M ′

4 interpolation kernel, a third-order scheme �rst introduced
for SPH methods [25], which is currently the preferred method of many workers. The spatial
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adaption with RBF interpolation does not exhibit this ‘initial remesh error’ and was able to
provide up to a four-order-of-magnitude improvement in velocity errors in one of the tests
presented in Reference [14].
The problem of scattered data interpolation is that of how to approximate an unknown

function f∈C(�) whose values are known on a set X = {x1; : : : ; xN} ⊂�⊂Rd. The RBF
approach, following the notation of Reference [26], is to choose the function that approximates
f to be of the form

sf; X (x)=
N∑
j=1
�j �j(x; xj) + p(x) (7)

where p(x) is a low-degree polynomial, and � :�×�→R is a �xed function satisfying
translation invariance and radiality. Clearly, the blob discretization of the vorticity is analogous
to interpolant (7), where the polynomial part is chosen as null and the basis function is the
cut-o� function.
The solution of (7) requires the satisfaction of the interpolation conditions by collocation,

leading to a linear system ��=f̃ for the coe�cients �=(�1; : : : ; �N ), where f̃ is the vector
of function values at the centres, f̃= {f(x1); : : : ; f(xN )}, and �ij=�(‖xi−xj‖). The matrix �
being full and ill-conditioned, it was concluded in Reference [15] that global basis function
methods are not feasible for large N . Signi�cant progress since then includes the use of
multipole expansions for the fast evaluation of interpolant (7), and for the matrix-vector
product on each step of an iterative solution method [27], and the use of preconditioning
and a GMRES iterative solution method [28], among others. Thus, large problem sizes have
become tractable.
During a spatial adaption process, a new set of particles is laid out inside the bounding

box of the current particle set. For simplicity (since our applications are unbounded), the
new particles are arranged in regular triangular (or sometimes square) lattices; however, by
formulation, a regular lattice is not required. The old particle information is used to calculate
the vorticity on the location of each new particle; this constitutes the left-hand side of system
(7). Then, the circulation strengths of the new particles are found by solving the linear
system, where the matrix �ij= ��(xi − xj). In constructing this matrix, the core sizes are set
to the original value before the core spreading steps (thus, the frequency of spatial adaption
determines the maximum core size in the calculation).

4. CALCULATIONS OF VISCOUS VORTEX INTERACTIONS

Extensive numerical studies have been performed where, using classic axisymmetric test prob-
lems such as inviscid vortex patches and Lamb–Oseen vortices, the proposed method has been
compared with the standard vortex method using remeshing. First results were presented in
Reference [14], and further detailed results including convergence studies will be presented
elsewhere; they must be omitted here due to space limits, and the preference for including re-
sults of more �uid dynamical interest apropos of viscous vortex interactions. Our �rst result is
the calculation of the �ow resulting from adding a localized elliptic perturbation to a Gaussian
vortex. When the perturbation amplitude is large, in Reference [21] it was demonstrated that
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Figure 1. Perturbed monopole relaxing to a tripole. Re=104, strength of the perturbation �=0:25; 15
equally spaced positive contours, and three equally spaced negative contours in dotted line.

this �ow relaxes to a quasi-steady rotating tripole. The initial condition is an axisymmetric
vortex !0 with perturbation !′, given below (where �= arg x is the azimuthal angle):

!0(x)=
1
4�
exp

(−|x|2
4

)
; !′(x)=

�
4�

|x|2 exp
(−|x|2

4

)
cos 2� (8)

The relaxation to a quasi-steady tripole is shown in Figure 1. These results reproduce
well those in Reference [21] in terms of shape of contours and rotation angle, but are much
smoother. We also obtain a tripole for the smaller Re=103, for which in Reference [21] the
structure erodes due to di�usion: we argue that this is numerical and caused by the errors
and numerical di�usion due to their vortex splitting scheme.
The calculation shown in Figure 1 was performed with: initial inter-particle spacing, h=0:18;

initial core size, �=0:2; number of particles N¡5000. Spatial adaption was performed
every 10 time steps, so that �max =0:2049, and time stepping was provided by a fourth-
order Runge–Kutta scheme, with �t=1:0. Unfortunately, there are no numerical parameters
reported in Reference [21], but the �rst author informally stated to us that the number of
vortex elements in their computations were in the ‘low to middle 10’s of thousands’ (L. F.
Rossi, private communication, 2004). One can safely assume that they used more than double
the number of particles than in the calculation shown in Figure 1; their results, however, are
noticeably noisy in comparison.
A direct comparison was made of the accuracy of (third-order) remeshing vs RBF inter-

polation on this �ow. Looking at the �eld di�erence of vorticity on a sampling mesh, before
and after spatial adaption, one can obtain an error measure. Using in this case h=0:2, and
shutting o� core spreading (i.e. inviscid), the error for three di�erent remeshing events was
of order 10−6; using RBF interpolation instead, the error was of order 10−10. Finally, a grid-
re�nement study was performed using h1 = 0:09, h2 = 0:126, h3 = 0:1764 (i.e. grid-re�nement
ratio r=1:4), and an observed order of convergence was obtained of p=2, which is consis-
tent with the estimates of convection error as developed in Reference [2] (more details are
given in Reference [29]).
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Figure 2. Vorticity contours of the right side of a symmetric two-vortex system (initially Gaussian) as
they adapt to each other’s strain �eld (on a frame rotating with the vortices); t′= t�=(2�a20).

The second application was obtained with a parallel implementation of the method, using
the PETSc library [30] and its built-in GMRES solvers. The �ow corresponds to two Gaussian
vortices, with ratio between their core size and separation distance, a0=b0 = 0:1, and Figure 2
shows the core deformations due to their early interaction. This reproduces extremely well the
results of Reference [22] using spectral methods on a 10242 mesh; the number of particles in
this calculation was only 2× 104. Note the logarithmic contour levels: this is a very severe test
for any numerical method, and thus the capacity for high accuracy with a meshless method
of computation is demonstrated.

5. CONCLUSION

A viscous vortex method has been developed where spatial adaption of the Lagrangian par-
ticles is e�ected by means of radial basis function interpolation, resulting in signi�cantly
increased accuracy in comparison with standard vortex methods with remeshing. The method
has been implemented in parallel, and validation is provided using problems of viscous vor-
tex interactions at high Reynolds numbers, including the evolution of a quasi-steady rotating
tripole, and the early interaction of two co-rotating viscous vortices—a severe test, for which
published results using spectral methods have been reproduced, demonstrating the high ac-
curacy of the new method. The formulation is wholly meshless, furthermore, and potentially
allows multi-scale computations and variable resolution in the physical domain. These exten-
sions are elements of the research in progress.
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